Journal of Hebei University of Water Resources and Electric Engineering ›› 2024, Vol. 34 ›› Issue (1): 54-60.DOI: 10.16046/j.cnki.issn2096-5680.2024.01.010

• Ecological Hydrology and Water Resources Column • Previous Articles     Next Articles

Application of Grey Time Series Random Combination Model in Groundwater Depth Prediction: A Case Study of Cangzhou

HAN Chao1, LIU Xiaoyan1, LIU Jiajun2, HE Yunpeng3, WEN Yongfu1, LIU Juan4   

  1. 1. Department of Hydralic Engineering,Hebei University of Water Resources and Electric Engineering, 061001, Cangzhou, Hebei, China;
    2. Cangzhou Water Resources Survey Planning and Design Institute Co., Ltd., 061000, Cangzhou, Hebei, China;
    3. Yangzhou Survey, Design and Research Institute Co., Ltd., 225000, Yangzhou, Jiangsu, China;
    4. Hebei South Canal River Affairs Center,061001, Cangzhou, Hebei, China
  • Received:2023-10-10 Revised:2023-12-08 Online:2024-03-30 Published:2024-04-19

基于灰色时间序列随机组合模型在地下水埋深预测中的应用——以沧州市为例

韩超1, 刘晓延1, 刘佳峻2, 贺云鹏3, 温永福1, 刘娟4   

  1. 1.河北水利电力学院水利工程系,河北省沧州市黄河西路49号 061001;
    2.沧州水利勘测规划设计院有限公司,河北省沧州市新华区交通北大道21-1号 061000;
    3.扬州市勘测设计研究院有限公司,江苏省扬州市邗江区物港路28号 225000;
    4.河北省南运河河务中心,河北省沧州市运河区新华东路3号 061001
  • 作者简介:韩 超(1987-),男,河北泊头人,讲师,在读博士生,主要从事水文水资源研究。E-mail:hchbwe@163.com
  • 基金资助:
    2023年度河北省水利科研与推广计划项目(2023-84);2023年度河北省水利科研与推广计划项目(2023-27);河北大学生创新创业训练计划项目(S202310085040);河北水利电力学院2023年度基本科研业务费产学研专项项目(SYKY2342);2022年沧州市科技计划自筹经费项目(222109002)

Abstract: Groundwater resources are an important basic resource supporting regional food production. In order to solve the problem of continuous decline in shallow groundwater levels in Hebei Province, taking Cangzhou, a typical plain area in Hebei Province, as an example, based on the observation data of water level monitoring wells from 2007 to 2022, a random combination model of groundwater depth and grey time series is constructed using MATLAB software combined with the principle of grey time series, revealing the variation law of groundwater depth in Cangzhou, which provides a basis for the sustainable development and utilization of groundwater resources in the plain areas of Cangzhou and even Hebei Province. Through relevant simulation methods, it has been confirmed that the model is concise, practical, and has high accuracy. The research results indicate that in the next three years (2023-2025), if the current development trend is followed, the groundwater level in Cangzhou will continue to decline with an average annual decrease of about 1.45m.

Key words: Cangzhou, prediction of groundwater depth, time series, auto correlation

摘要: 地下水资源是支撑区域粮食生产的重要基础资源,为解决河北省浅层地下水水位持续下降问题,以河北省典型平原区沧州市为例,依据2007-2022年水位监测井观测数据,通过MATLAB软件结合灰色时间序列原理搭建地下水埋深灰色时间序列随机组合模型,揭示沧州市地下水埋深变化规律,为沧州市乃至河北省平原区地下水资源可持续开发利用提供依据。通过相关模拟方法证实该模型简洁实用,精度较高。研究结果表明:未来3年(2023-2025年),如果按照目前的发展趋势,沧州市地下水位会继续下降,平均年降幅为1.45m左右。

关键词: 沧州市, 地下水埋深预测, 时间序列, 自相关

CLC Number: