[1] 彭宁,吴浩,漆梓渊,等.一种电子换向器表面缺陷图像去噪和增强算法[J].河北水利电力学院学报,2023,33(3):1-8. [2] 丁畅,董丽丽,许文海.“直方图”均衡化图像增强技术研究综述[J].计算机工程与应用,2017,53(23):12-17. [3] 谢凤英,汤萌,张蕊.基于Retinex的图像增强方法综述[J].数据采集与处理,2019,34(1):1-11. [4] Saroj Kumar Chandra, Manish Kumar Bajpai. Fractional mesh-free linear diffusion method for image enhancement and segmentation for automatic tumor classification[J]. Biomedical Signal Processing and Control,2020,58:101841-101841. [5] Fan Weiqiang, Huo Yuehua, Li Xiaoyu. Degraded Image Enhancement Using Dual-Domain-Adaptive Wavelet and Improved Fuzzy Transform[J]. Mathematical Problems in Engineering, 2021,2021:5578289-5578289. [6] 江泽涛,覃露露.一种基于U-Net生成对抗网络的低照度图像增强方法[J].电子学报,2020,48(2):258-264. [7] 王德兴,吴若有,袁红春,等.基于多尺度注意力融合和卷积神经网络的水下图像恢复[J].吉林大学学报(工学版),2021,51(4):1396-1404. [8] 李庆忠,刘清.基于小波变换的低照度图像自适应增强算法[J].中国激光,2015,42(2):280-286. [9] Lore K G, Akintayo A, Sarkar S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017,61(1):650-662. [10] Jha R K, Chouhan R, Aizawa K. Dynamic stochastic resonance-based improved logo extraction in discrete cosine transform domain [J]. Computers & Electrical Engineering,2014,40(6):1917-1929. [11] Jiao S, Liu Q, Liu W. Image denoising using two-dimensional stochastic resonance in wavelet domain [C]//2017 Chinese Automation Congress (CAC). IEEE, 2017:4489-4494. [12] Mohammed Javed, Tryambak Bhattacharjee, Panduranga Nagabhushan. Enhancement of variably illuminated document images through noise-induced stochastic resonance[J]. IET Image Processing,2019,13(13):2562-2571. [13] 冷永刚,王太勇,李瑞欣,等.视觉信息的随机共振[J].天津大学学报,2004(6):12-16. [14] 沈伟,庞全,范影乐.双稳态自适应随机共振的强噪声图像复原研究[J].计算机工程与应用,2009,45(15):180-182. [15] 冷永刚,赵尔华,石鹏,等.二维随机共振参数调节的图像处理[J].天津大学学报,2011,44(10):907-913. [16] 曹凯,陈国虎,江桦,等.自适应引导进化遗传算法[J].电子与信息学报,2014,36(8):1884-1890. [17] 陈果,左洪福.图像分割的二维最大熵遗传算法[J].计算机辅助设计与图形学学报,2002(6):530-534. [18] 张军,刘先禄,张宇山.基于注意力机制的Siamese目标跟踪算法研究[J].河北水利电力学院学报,2022,32(1):1-8. |