Journal of Hebei University of Water Resources and Electric Engineering ›› 2022, Vol. 32 ›› Issue (4): 60-66.DOI: 10.16046/j.cnki.issn2096-5680.2022.04.011

• Computer Application and Automatic Control Column • Previous Articles     Next Articles

Internet of Things Anomaly Attack Detection Method Based on Improved DNN

ZHANG Si-han1, JIANG Jiu-chao2   

  1. 1. AnHui Business Vocational College School of Management, 231131, Hefei, Anhui, China;
    2. Department of Electrical Automation, Hebei University of Water Resources and Electric Engineering, 061001, Cangzhou, Hebei, China
  • Received:2021-12-14 Revised:2021-12-27 Online:2022-12-31 Published:2023-10-27

基于改进DNN的物联网异常攻击检测方法

张思涵1, 姜久超2   

  1. 1.安徽工商职业学院管理学院,安徽省合肥市双凤经济开发区金宁路北16号 231131;
    2.河北水利电力学院电气自动化系,河北省沧州市黄河西路49号 061001
  • 通讯作者: 姜久超(1968-)男,河北辛集人,教授,主要研究方向为电气自动控制与仪器仪表。E-mail:xuebaojjc@163.com
  • 作者简介:张思涵(1993-),女,安徽合肥人,助教,主要研究方向:物流工程、供应链管理。E-mail:zhangsihandc123@163.com
  • 基金资助:
    河北省高等学校科学研究计划(Z2020231)

Abstract: In order to solve the problem that the accuracy of traditional Abnormal attack detection model of Internet of Things is insufficient when training samples are insufficient, decision tree (DT) is introduced to improve the deep neural network (DNN) model. The addition of decision tree makes it easier to obtain the optimal salient feature set when DNN conducts and features extraction. At the same time, features can be summarized through decision tree, and new features can be inferred through DNN's perceptual learning ability, enabling the model to identify more Internet of Things behaviors. At last, the improved model is validated by computer simulation performance, and the results show that the DT - within DNN model can attack of black holes, DDoS attacks and other Internet attack testing, and testing has relatively higher precision and recall rate and F1 score, proved that the detection model can be applied to a variety of Internet of things attack type testing, has a certain practicality.

Key words: Internet of Things, DNN neural network, abnormal attack detection, decision tree, feature screening

摘要: 针对训练样本不足时,传统物联网异常攻击检测模型精准度不足的问题,引入决策树(DT)来对深度神经网络(DNN)模型进行改进。决策树的加入,让DNN进行及特征提取时,更容易获得最优的显著特征集;同时,通过决策树还能够对特征特点进行总结,通过DNN的感知学习能力,推断出新的特征,使模型能够识别出更多的物联网行为。最后,通过仿真验证改进后的模型性能,结果表明,DT-DNN模型能够对黑洞攻击、DDoS攻击等多种物联网攻击行为进行检测,且检测具有相对较高的精确度、召回率和F1分数,证明该检测模型可应用于多种物联网攻击类型检测,具有一定的实用性。

关键词: 物联网, DNN神经网络, 异常攻击检测, 决策树, 特征筛选

CLC Number: