[1]赵建福.气液两相流动与相变传热[A].见:胡文瑞等.微重力科学概论[M].北京:科学出版社,2010,第127-164页./Zhao JF.Two-phase Gas-liquid Flow and Heat Transfer with Phase Change[A].In:Hu WR,et al.An Introduction of Microgravity Science[M].Beijing,Science Press,2010.
[2]杜王芳,赵建福,李凯.多相热流体系统中的主导作用力分区准则[J].河北水利电力学院学报,2018,(1):1-5/12./Du WF,Zhao JF,Li K.Criteria for dominated force regime map in multiphase thermal fluid system.[J].Hebei Univ.Water Res.Ele.Eng.,2018,(1):1-5/12.
[3] Delil AAM.Gravity dependent condensation pressure drop and heat transfer in ammonia two-phase heat transport systems[R].NASA TR No.94,1992.
[4] Delil AAM.On thermal-gravitational modelling,scaling and flow pattern mapping issues of two-phase heat transport systems[R].AIP Ser.458(1),pp.761-771,1999.
[5]赵建福.微重力条件下气/液两相流动研究[D].中国科学院力学研究所博士后研究工作报告,中国北京,2000年7月./Zhao JF.Study on Two-phase Flow at Microgravity[D].Postdoctoral Research Report,Institute of Mechanics,Chinese Academy of Sciences,Beijing,China,July 2000.
[6]赵建福.微重力条件下气/液两相流流型的研究进展[J].力学进展,1999,29(3):369-382./Zhao JF.A review of twophase gas-liquid flow patterns under microgravity conditions[J].Adv.Mech.,1999,29(3):369-382.
[7]吕成道,李佛金,王汉强,程尚模.地面模拟微重力下两相流动沸腾换热的分析[J].华中理工大学学报,1998,26(4):81-83./Lv C,Li F,Wang H,Cheng S.Analysis on modeling conditions of two-phase flow boiling heat transfer under microgravity[J].Chin.J.Huazhong Univ.Sci.Tech.,1998,26(4):81-83.
[8] Zhao JF,Hu WR.Slug to annular flow transition of microgravity two-phase flow[J].Int.J.Multiphase Flow,2000,26(8):1295–1304.
[9] Zhao JF,Xie JC,Lin H,Hu WR,Ivanov AV,Belyeav AYu.Experimental studies on two-phase flow patterns aboard the Mir space station[J].Int.J.Multiphase Flow,2001,27(11):1931–1944.
[10] Reinarts T R,Ungar E K,Butler C D.Adiabatic two-phase pressure drop in microgravity:TEMP2A-3flight experiment measurements and comparison with predictions[C].In:33rd Aerospace Sci.Meeting&Exhibit,Reno,NV,Jan.9-12,1995.
[11] Baba S,Sakai T,Sawada K,Kubota C,Wada Y,Shinmoto Y,Ohta H,Asano H,Kawanami O,Suzuki K,Imai R,Kawasaki H,Fujii K,Takayanagi M,Yoda S.Proposal of experimental setup on boiling two-phase flow on-orbit experiments onboard Japanese experiment module“KIBO”[J].J.Phys.Conf.Ser.,2011,327:012055-1/12.
[12] Gao W,Xu X,Liang X.Experimental study on the effect of orientation on flow boiling using R134ain a mini-channel evaporator[J].Appl.Thermal Eng.,2017,121:963–973.
[13] Bower JS,Klausner JF,Sathyanarayan S.High heat flux,gravity independent,two-phase heat exchangers for spacecraft thermal management[J].SAE J.Aerospace,(002,747–755,Paper2002-01-3196.
[14] Bower JS,Klausner JF.Gravity independent subcooled flow boiling heat transfer regime[J].Exp.Thermal Fluid Sci.,2006,31:141–149.
[15] Yue SW,Du WF,Liu P,Zhao JF,Li K,Li W.Revisiting of BKS gravity-independent criterion[C].12th Asian Microgravity Symposium(AMS2018),Zhuhai,China,November 12-16,2018.
[16] Zhang H,Mudawar I,Hasan MM.A method for assessing the importance of body force on flow boiling CHF[J].J.Heat Transfer Trans.ASME,2004,126:161–168.
[17] Konishi C,Mudawar I,Hasan MM.Criteria for negating the influence of gravity on flow boiling critical heat flux with two-phase inlet conditions[J].Int.J.Heat Mass Transfer,2013,65:203–218.
[18] O’Neill LE,Park I,Kharangate CR,Devahdhanush VS,Ganesan V,Mudawar I.Assessment of body force effects in flow condensation–part II:Criteria for negating influence of gravity[J].Int.J.Heat Mass Transfer,2017,106:313–328.
|