[1] 薛乾明.大数据背景下智慧城市空间规划与建设方法[J].科技和产业,2023,23(19):128-135. [2] 孙瑛泽,王义鹏.“新基建”背景下智慧城市基础设施智能化建设思路[J].数字通信世界,2023,(7):166-168. [3] 华先胜,黄建强,金仲明,等.城市大规模视觉智能综述[J].人工智能,2021,(5):6-15. [4] 王继超,李擎,崔家瑞,等.一种改进的人工蜂群算法—粒子蜂群算法[J].工程科学学报,2018,40(7):871-881. [5] He K, Zhang X, Ren S. etal.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,37(9):1904-1916. [6] Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object Detection[C]//Proceedings of the IEEE Conferece on Computer Vision and Pattern Recognition, 2017:2117-2125. [7] 王丽萍,刘磊,曾聪,等.面向智慧城市的窨井盖安全系统设计[J].物联网技术,2021,11(12):92-94. [8] 渠逸,汪诚,余嘉博,等.基于YOLOv5的表面缺陷检测优化算法[J].空军工程大学学报,2023,24(5):80-87. [9] 郑尚坡,陈德富,邱宝象,等.基于树莓派与YOLOv5-Lite模型的行人检测系统设计[J].计算机时代,2023(9):116-119. [10] 王继超,张丽娟,张春茜,等.基于YOLOv4与改进DeepSORT算法的车流量检测[J].河北水利电力学院学报,2023,33(1):6-11. [11] Redmon J, DivvalaS, GirshickR, et al. You only look once: Unified,real-time object detection with region proposal networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149. [12] Pedmon J, Farhadi A.YOLO9000: Better, Faster, Stronger[C]//IEEE Conference on Computer Vision & Pattern Recognition,2017:6517-6525. [13] Redmon J,Farhadi A.YOLOv3:An Incremental Improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, USA,2018:1-4. [14] BOCHKOVSKIY A, WANG C, LIAO H. YOLOv4: Optimal Speed and Accuracy of Object Detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 2020:392-401. [15] 章佳琪,肖建.DID-YOLO:一种适用于嵌入式设备的移动机器人目标检测算法[J].计算机技术与发展,2023,33(10):8-14. [16] 高伟,郭美青,张兴忠,等.基于改进PP-YOLOv2的红外图像电力设备检测[J].计算机仿真,2023,40(9):81-87+241. [17] 孙东来,王继超,陈科,等.基于Ghost-YOLOv3-2算法的2尺度猪目标检测[J].江苏农业科学,2022,50(7):189-196. [18] 张慧,王坤峰,王飞跃.深度学习在目标视觉检测中的应用进展与展望[J].自动化学报.2017,43(8):1289-1305. [19] 吴晨曦,张洪欣,崔晓彤.Jetson Nano神经网络物理电磁泄漏安全研究[J].太赫兹科学与电子信息学报,2023,21(9):1144-1149. |