河北水利电力学院学报 ›› 2023, Vol. 33 ›› Issue (1): 6-11.DOI: 10.16046/j.cnki.issn2096-5680.2023.01.002

• 人工智能与机器人专题 • 上一篇    下一篇

基于YOLOv4与改进DeepSORT算法的车流量检测

王继超1,2, 张丽娟1,2, 张春茜1, 回振桥1, 申耀辉1   

  1. 1.河北水利电力学院电气自动化系,河北省沧州市黄河西路49号 061001;
    2.河北省高校水利自动化与信息化应用技术研发中心,河北省沧州市黄河西路49号 061001
  • 收稿日期:2022-11-02 修回日期:2022-11-10 发布日期:2023-10-26
  • 作者简介:王继超(1992-),男,河北沧州人,硕士,主要研究方向为深度学习、智能优化。E-mail:491366271@qq.com
  • 基金资助:
    河北省教育厅科学技术研究项目(QN2021228);河北省大学生创新创业训练计划(S202010085030);沧州市重点研发计划指导项目(204102010);沧州市重点研发计划指导项目(204102014);河北省教育厅科学技术研究项目(ZC2022018)

Traffic Flow Detection Based on YOLOv4 and Improved DeepSORT Algorithm

WANG Ji-chao1,2, ZHANG Li-juan1,2, ZHANG Chun-qian1, HUI Zhen-qiao1, Shen Yao-hui1   

  1. 1. Department of Electrical Automation, Hebei University of Water Resources and Electric Engineering, 061001, Cangzhou, Hebei, China;
    2. Water Resources Automation and Informatization Application Technology and Development Center of Hebei Colleges, 061001, Cangzhou, Hebei, China
  • Received:2022-11-02 Revised:2022-11-10 Published:2023-10-26

摘要: 为了提高不同时段车流量的检测率,本文在优良的目标检测模型YOLOv4基础上,将传统的DeepSORT算法进行改进,将原有的IoU变为CIoU,保留追踪信息的同时,提供了更丰富匹配策略,使得目标追踪更加稳定,在一定程度上解决了光线较暗容易丢失目标的问题。最后在车流量检测阶段将本文改进算法与SORT算法、DeepSORT算法进行对比试验。试验结果表明,在白天情况下,本文算法相较于SORT算法提高10.7%,较DeepSORT算法提高1.3%;在夜晚情况下,本文算法相较于SORT算法提高18.1%,较DeepSORT算法提高7.9%。本文改进算法在夜晚车流量检测精准,从而为环境昏暗的条件下物体目标检测与追踪提供了理论参考与方法依据。

关键词: 车流量检测, YOLOv4, DeepSORT, 目标追踪

Abstract: In order to improve the detection rate of traffic flow in different time periods, based on the excellent target detection model YOLOv4, this paper improved the traditional DeepSORT algorithm, changed the original IoU into CIoU, and provided more abundant matching strategies to make the target tracking more stable while retaining the tracking information. To a certain extent, it solves the problem that the target is easily lost when the light is dim. Finally, the improved algorithm is compared with SORT algorithm and DeepSORT algorithm in traffic flow detection stage. Experimental results show that the proposed algorithm improves by 10.7% compared with SORT algorithm and 1.3% compared with DeepSORT algorithm in daytime. At night, the proposed algorithm improves 18.1% compared with SORT algorithm and 7.9% compared with DeepSORT algorithm. In this paper, the improved algorithm is accurate in detecting traffic flow at night, which provides theoretical reference and method basis for object detection and tracking in dim environment.

Key words: traffic flow detection, YOLOv4, DeepSORT, target tracking

中图分类号: