[1] Qi Q, Tao F, Hu T, et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2021,58:3-21. [2] 林承志,黄华,张仕祥.基于Unity的制造业自动化生产线DT平台设计[J].唐山学院学报,2023,36(3):38-43. [3] Zhu X, Zhao L, Cao J, et al. Fault diagnosis of 5G networks based on digital twin model[J]. China Communications, 2023,20(7):175-191. [4] Li X, Zhang Y, Wang F, et al. A Fault Diagnosis Method of Rolling Bearing Based on Wavelet Packet Analysis and Deep Forest[J].Symmetry, 2022,14:267-284. [5] 蔡少辉.基于振动信号分析的电机故障诊断应用研究[J].电子测试,2021(6):95-96. [6] 朱繁泷.基于振动信号的旋转机械运行状态趋势分析与故障诊断[D].赣州:江西理工大学,2014. [7] 王文聪,张晖,陈光曦.数字交互设计模式未来发展趋势研究[J].互联网周刊,2023(19):30-32. [8] 金家兴.基于数字孪生的滚动轴承故障建模与智能诊断方法研究[D].哈尔滨:哈尔滨理工大学,2023. [9] 张思涵,姜久超.基于改进DNN的物联网异常攻击检测方法[J].河北水利电力学院学报,2022,32(4):60-66. [10] Jing Y, Wang X, Yu Z, et al. Diagnostic research for the failure of electrical transformer winding based on digital twin technology[J].IEEE Transactions on Electrical and Electronic Engineering, 2022,17:1629-1636. [11] 张诚,马梓玮,刘斌,等.DT驱动的小样本旋转机械剩余寿命预测[J].西安交通大学学报,2023,57(12):168-178. [12] Du T, Zhang H, Wang L. Analogue circuit fault diagnosis based on convolution neural network[J]. Electronics Letters, 2019,55(24):1277-1279. [13] Gonzalez R C. Deep convolutional neural networks[Lecture Notes][J]. IEEE Signal Processing Magazine, 2018,35(6):79-87. [14] Guo K, Wan X, Liu L, et al. Fault Diagnosis of Intelligent Prodution Line Based on Digital Twin and Improved Random Forest[J].Applied Sciences, 2021,11:7733-7751. [15] Weiss K, Khoshgoftaar T M, Wang D. A survey of transfer learning.[J]. Journal of Big Data, 2016,3(1):1–40. [16] Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks.[J]. Adv Neural Inf Proces Syst, 2014,27:1-9. [17] Baoling L, Brigham JC, Jun H, et al. Roll contact fatigue defect recognition using computer vision and deep convolutional neural networks with transfer learning.[J].Engineering Research Express, 2019,(1):1-13. [18] Ma X, Chen F, Wang Z, et al. Digital twin modelfor chiller fault diagnosis based on SSAE and transfer learning.[J]. Building and Environment, 2023.243:110718. |