[1] 油新华,汤劲松.土石混合体野外水平推剪试验研究[J].岩石力学与工程学报,2002(10):1537-1540. [2] 龚辉,张晓健,艾传井,等.土石混合料填方体原位剪切试验方法探讨[J].长江科学院院报,2018,35(4):91-96. [3] 李晓,廖秋林,赫建明,等.土石混合体力学特性的原位试验研究[J].岩石力学与工程学报,2007(12):2377-2384. [4] Shinohara K, Oida M, Golman B.Effect of particle shape on angle of internal friction by triaxial compression test[J]. Powder technology,2000,107(1-2):131-136. [5] 董云.土石混合料强度特性的试验研究[J].岩土力学,2007(6):1269-1274. [6] Shakoor A, Cook B D. The effect of stone content, size, and shape on the engineering properties of a compacted silty clay[J]. Bulletin of the Association of Engineering Geologists, 1990,27(2):245-253. [7] Patwardhan A S, Rao J S, Gaidhane R B. Interlocking effects and shearing resistance of boulders and large size particles in a matrix of fines on the basis of large scale direct shear tests[C]//Proceedings of the 2nd Southeast Asian Conference on Soil Mechanics. Singapore.1970:265-273. [8] Gao W, Iqbal J, Hu R. Investigation of geomechanical characterization and size effect of soil-rock mixture: a case study[J]. Bulletin of Engineering Geology and the Environment, 2021,80(8):6263-6274. [9] Kuenza K, Towhata I, Orense R P,et al. Undrained torsional shear tests on gravelly soils[J]. Landslides,2004,1:185-194. [10] 徐文杰,胡瑞林,岳中琦,等.基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究[J].岩石力学与工程学报,2008(5):996-1007. [11] Simoni A, Houlsby G T. The direct shear strength and dilatancy of sand-gravel mixtures[J]. Geotechnical & Geological Engineering, 2006,24:523-549. [12] Zhong Z, Xu J, Liu X, et al.Large-scale triaxial tests on deformation and mechanical behavior of soil-rock mixture in mountain area[J]. EGJE, 2016,2(1):26. [13] Wei H, Xu W, Wei C, et al.Influence of water content and shear rate on the mechanical behavior of soil-rock mixtures[J]. Science China Technological Sciences, 2018,61:1127-1136. [14] Zhang Z, Fu X, Yuan W, et al.The influence of the fractal dimension on the mechanical behaviors of the soil-rock mixture: A case study from southwest China[J]. Fractal and Fractional, 2023,7(2):106. [15] 涂义亮,刘新荣,任青阳,等.含石量和颗粒破碎对土石混合料强度的影响研究[J].岩土力学,2020,41(12):3919-3928. [16] 陈爱军.颗粒级配对粗粒土强度和变形特性的影响[J].湖南工程学院学报(自然科学版),2017,27(3):75-82. [17] 张森,曾亚武,夏磊.块石含量对土石混合体边坡稳定性影响的数值研究[J].长江科学院院报,2016,33(5):83-87. [18] 杨忠平,李进,蒋源文,等.含石率对土石混合体-基岩界面剪切力学特性的影响[J].岩土工程学报,2021,43(8):1443-1452. [19] 贾学明,柴贺军,郑颖人.土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J].岩土力学,2010,31(9):2695-2703. [20] 史旦达,周健,贾敏才,等.考虑颗粒破碎的砂土高应力一维压缩特性颗粒流模拟[J].岩土工程学报,2007(5):736-742. [21] 徐永福.基于颗粒破碎的粗粒土剪切强度的模拟分析[J].工程地质学报,2018,26(6):1409-1414. [22] 韩洪兴,陈伟,邱子锋,等.考虑破碎的堆石料二维颗粒流数值模拟[J].岩土工程学报,2016,38(S2):234-239. [23] 唐建一,徐东升,刘华北.含石量对土石混合体剪切特性的影响[J].岩土力学,2018,39(1):93-102. [24] 雪青华.土石混合体直剪特性及颗粒破碎特征研究[D].徐州:中国矿业大学,2021. [25] 杨继红,董金玉,黄志全,等.不同含石量条件下堆积体抗剪强度特性的大型直剪试验研究[J].岩土工程学报,2016,38(S2):161-166. [26] 唐红梅,延兆奇,陈洪凯.三峡水库岸坡崩坡堆积物力学特性数值试验研究[J].重庆师范大学学报(自然科学版),2016,33(5):42-49. [27] 雷晓丹,杨忠平,张晓景,等.土石混合料剪切特性及块石破碎特征[J].岩土力学,2018,39(3):899-908. [28] 杨光伟,赵军霖,黄建,等.含石量对砂卵石土的颗粒破碎及强度与变形的影响研究[J].中国水利水电科学研究院学报(中英文),2022,20(3):1-10. [29] 王光进,杨春和,张超,等.粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J].岩土力学,2009,30(12):3649-3654. [30] 张敏超,刘新荣,王鹏,等.不同含石量下泥岩土石混合体剪切特性及细观破坏机制[J].土木与环境工程学报(中英文),2019,41(6):17-26. [31] 徐文杰,胡瑞林,曾如意.水下土石混合体的原位大型水平推剪试验研究[J].岩土工程学报,2006(7):814-818. [32] 李远耀,殷坤龙,柴波,等.三峡库区滑带土抗剪强度参数的统计规律研究[J].岩土力学,2008(5):1419-1424. [33] 董金玉,郑珠光,周建军,等.不同含石量条件下砂卵石土特性试验研究[J].湖南大学学报(自然科学版),2018,45(S1):183-189. [34] 宁金成,孙久民.土石混合体的力学性能影响因素研究[J].中外公路,2012,32(2):207-210. [35] Liu L, Mao X, Xiao Y, et al. Effect of rock particle content on the mechanical behavior of a soil-rock mixture (SRM) via large-scale direct shear test[J/OL]. Advances in Civil Engineering, Article ID 6452657, 16 pages, 2019.https://doi.org/10.1155/2019/6452657 [36] 郭庆国.关于粗粒土工程特性及其分类的探讨[J].水利水电技术,1979(6):53-57. [37] Hardin B O. Crushing of soil particles[J]. Journal of geotechnical engineering, 1985, 111(10):1177-1192. [38] 杨启隆.真三轴应力状态下堆石料颗粒破碎数值模拟研究[D].成都:西南交通大学,2022. [39] 杜俊,杨新昭,张龙,等.排水条件对粗粒土强度和变形影响的试验研究[J].水科学与工程技术,2022(6):67-70. |