[1] 戴念祖.中国力学史[M].石家庄:河北教育出版社,1988. [2] 武际可.近代力学在中国的传播与发展[M].北京:高等教育出版社,2005. [3] O. Darrigol. Between hydrodynamics and elasticity theory: the first five births of the Navier-Stokes equation [J]. Arch. Hist. Exact Sci.,2002,56(2):95-150. [4] O. Reynolds. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels [J]. Phil. Trans. Roy. Soc. London A, 1883,174:935-982. [5] H.Blasius.Das Ähnlichkeitsgesetz bei Reibungsvorgängenin Flüssigkeiten [J]. VDI Forschungsh, 1913,131:1-41. [6] M. Eckert. Ludwig Prandtl and the growth of fluid mechanics in Germany [J]. Comp. Ren. Mecanique, 2017,345:467-476. [7] F.M. White. Fluid Mechanics (7th ed.) [M]. New York: McGraw-Hill, 2011. [8] C.F. Colebrook. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws [J]. J. Inst. Civil Eng., 1938/1939,11(4):133-156. [9] L.普朗特著,郭永怀、陆士嘉译.流体力学概论[M].北京:科学出版社,1981. [10] C.F. Colebrook, T. Blench, H. Chatley, et al. Correspondence. [J]. J. Inst. Civil Eng., 1939,12(8):393-422. [11] H. Chatley. Measurement of river bores[J]. Nature,1930,138:207. [12] H. Chatley. Obituary, Herbert Chatley, D.Sc.(Eng.),1885-1955[J]. Proc. Inst. Civil Eng.,1955,4(4):632-633. [13] L. Zeghadnia, J.L. Robert, B. Achour. Explicit solutions for turbulent flow friction factor: A review, assessment and approaches classification [J]. Ain Shams Eng. J., 2019,10(1):243-252. [14] N.X. Chen. An explicit equation for friction factor in pipe [J]. Ind.Eng. Chem. Fund., 1979,18(3):296-297. [15] X.D. Fang, Y. Xu, Z.R. Zhou. New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations [J]. Nucl. Eng. Des., 2011,241:897-902. [16] M.M. Shaikh, S.U.R. Massan, A.I. Wagan. A new explicit approximation to Colebrook’s friction factor in rough pipes under highly turbulent cases[J]. Int. J. Heat Mass Transfer,2015,88:538-543. [17] S.W. Churchill. Friction-factor equation spans all fluid-flow regimes [J]. Chem. Eng., 1977,7:91-92. [18] D.D. Joseph, B.H. Yang. Friction factor correlations for laminar, transition and turbulent flow in smooth pipes [J]. Phys. D, 2010,239:1318-1328. [19] G. Gioia, P. Chakraborty. Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory[J]. Phys. Rev. Lett., 2005,96(4):044502. [20] G. Gioia, N. Guttenberg, N. Goldenfeld, et al. Spectral Theory of the Turbulent Mean-Velocity Profile[J]. Phys. Rev. Lett.,2010,105(18):184501. [21] A.N. Kolmogorov. Local structure of turbulence in an incompressible viscous fluid at very high Reynolds number [J]. Dokl. Akad. Nauk. SSSR, 1941,30:301-305. Reprinted in Proc. Roy. Soc. Lond. A,1991,434:9-13. [22] H.R. Anbarlooei, D.O.A. Cruz, F. Ramos. New power-law scaling for friction factor of extreme Reynolds number pipe flows [J]. Phys. Fluids, 2020,32(9):95121. [23] S.A.Dixit, A. Gupta, H. Choudhary, A.K.Singh, T. Prabhakaran. A new universal model for friction factor in smooth pipes[J]. Phys. Fluids, 2021,33(3):035134. |