[1] 邓悦,王冉,王芳,等.脊髓损伤患者远程康复效果的系统分析再评价[J].实用临床医药杂志,2023,27(22):17-23. [2] 刘宁,刘雨泉,祝斌,等.脊髓损伤神经学分类国际标准国内应用情况的文献计量学研究[J].中国康复理论与实践,2023,29(7):808-815. [3] 张姣姣.中国创伤性脊髓损伤住院患者疾病负担及转归分析[D].北京:中国疾病预防控制中心,2021. [4] 方露,谢财忠,王红星,等.脊髓损伤后痉挛的机制及其治疗研究进展[J].中国康复医学杂志,2020,35(1):112-118. [5] 吴丹榕,莫仙容,朱玉连,等.脊髓损伤后肌痉挛的物理治疗[J].上海医药,2023,44(7):3-7. [6] 陈鹏岗,孙国强,李晓泽,等.基于电子病历的心脑血管疾病精准防控方案设计[J].医学信息学杂志,2023,44(12):71-77. [7] SHAPIRO M, LANDAU R, SHAY S, et al. Early detection of COVID-19 outbreaks using textual analysis of electronic medical records[J]. Journal of Clinical Virology, 2022,155:105251. [8] KAO Y T, HUANG C Y, FANG Y A, et al. Machine learning-based prediction of atrial fibrillation risk using electronic medical records in older aged patients[J]. The American Journal of Cardiology, 2023,198:56-63. [9] 刘新忠,赵澳庆,谢文武,等.基于BERT-GAT-CorNet多标签中文短文本分类方法[J].计算机应用,2023,43(S2):18-21. [10] CHOUGRAD H, ZOUAKI H, ALHEYANE O. Multi-label transfer learning for the early diagnosis of breast cancer[J]. Neurocomputing, 2020, 392:168-180. [11] JAMTHIKAR A, GUPTA D, JOHRI A M, et al. A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study[J]. Computers in Biology and Medicine, 2022,140:105102. [12] CHARTE F, RIVERA J A, JESUS D J M, et al. MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation[J]. Knowledge-Based Systems, 2015,89:385-397. [13] 陆佳丽.特征选择及多标签分类算法研究[D].重庆:重庆邮电大学,2021. |