河北水利电力学院学报 ›› 2021, Vol. 31 ›› Issue (1): 72-74+80.DOI: 10.16046/j.cnki.issn2096-5680.2021.01.014

• 基础科学研究 • 上一篇    下一篇

关于一类抛物问题爆破时间下界估计的注记

王园园1,霍志鑫1,孔德志1,程树明2,周利杰2   

  1. 1.河北水利电力学院基础部,河北省沧州市重庆路1号 061001;
    2.河北水利电力学院电气工程学院,河北省沧州市重庆路1号 061001

  • 收稿日期:2020-02-20 出版日期:2021-03-31 发布日期:2021-04-30
  • 作者简介:王园园(1991-),女,河北沧县人,助教,从事微分方程的研究。E-mail:1293089313@qq.com
  • 基金资助:
    河北省教育厅重点项目(ZD2016125)

Remark on the Lower Bound for the Blowup Time of the Solution to a Parabolic Equation

WANG Yuan-yuan1,HUO Zhi-xin1,KONG De-zhi1,CHENG Shu-ming2,ZHOU Li-jie2   

  1. 1.Foundation Department,Hebei University of Water Resources and Electric Engineering,061001,Cangzhou,Hebei,China;
    2.School of Electrical Engineering,Hebei University of Water Resources and Electric Engineering,061001,Cangzhou,Hebei,China

  • Received:2020-02-20 Online:2021-03-31 Published:2021-04-30

摘要: 文中将拟线性抛物问题爆破时间的下界估计结果推广到了含散度型微分算子以及非线性项形式的更一般情形,利用拟线性爆破时间下界估值的思想方法和一些不等式估计,得出爆破时间的一个下界估计,并给出了定理。

关键词: 散度型微分算子, 拟线性抛物方程, 爆破时间的下界

Abstract: In this paper,the lower bound of blow up time for quasilinear parabolic problem is extended to the more general cases with divergence type differential operators and nonlinear terms.By using the idea of lower bound of blow up time for quasilinear parabolic problems and some inequality estimates,a lower bound of blow up time is obtained,and a theorem is given.

Key words: diverse differential operator, quasi-linear parabolic equation, lower bound for blowup time

中图分类号: